Les 10 meilleurs livres sur le machine learning
Machine learning avec Python collection O'Reilly

Entrez de plain-pied dans le monde fascinant la data science Vous aussi participez à la révolution qui ramène l'intelligence artificielle au coeur de notre société, grace aux data scientists. La data science consiste à traduire des problèmes de toute autre nature, en problèmes de modélisation quantitative, résolus par des algorithmes de traitement. Ce livre se présente comme une référence pour tous les développeurs, statisticiens ou chefs de projets ayant à résoudre des problèmes liés à la data science.
Machine Learning avec Scikit Learn 2e éd....

L’apprentissage automatique (Machine Learning) est aujourd’hui en pleine explosion. Mais de quoi s’agit-il exactement, et comment pouvez-vous le mettre en oeuvre dans vos propres projets ? L’objectif de cet ouvrage est de vous expliquer les concepts fondamentaux du Machine Learning et de vous apprendre à maîtriser les outils qui vous permettront de créer vous-même des systèmes capables d’apprentissage automatique. Vous apprendrez ainsi à utiliser Scikit-Learn, un outil open source très simple et néanmoins très puissant que vous pourrez mettre en oeuvre dans vos systèmes en production. • Apprendre les bases du Machine Learning en suivant pas à pas toutes les étapes d’un projet utilisant Scikit-Learn et pandas. • Ouvrir les boîtes noires pour comprendre comment fonctionnent les algorithmes. • Explorer plusieurs modèles d’entraînement, notamment les machines à vecteur de support (SVM). • Comprendre le modèle des arbres de décision et celui des forêts aléatoires, et exploiter la puissance des méthodes ensemblistes. • Exploiter des techniques d’apprentissage non supervisées telles que la réduction de dimensionnalité, la classification et la détection d’anomalies. Tous les exemples de code sont disponibles en ligne sous la forme de notebooks Jupyter à l’adresse suivante : https://github.com/ageron/handson-ml2
Introduction au Machine Learning

Cet ouvrage s'adresse aux étudiants en fin de licence et en master d'informatique ou de maths appliquées, ainsi qu'aux élèves ingénieurs. Le Machine Learning est une discipline dont les outils puissants permettent aujourd'hui à de nombreux secteurs d'activité de réaliser des progrès spectaculaires grâce à l'exploitation de grands volumes de données. Le but de cet ouvrage est de vous fournir des bases solides sur les concepts et les algorithmes de ce domaine en plein essor. Il vous aidera à identifier les problèmes qui peuvent être résolus par une approche Machine Learning, à les formaliser, à identifier les algorithmes les mieux adaptés à chaque problème, à les mettre en oeuvre, et enfin à savoir évaluer les résultats obtenus. Les notions de cours sont illustrées et complétées par 86 exercices, tous corrigés.
Le Machine Learning avec Python De la...

Préface de Patrick Albert - Cofondateur d'ILOG et du HUB France IA Ce livre sur le Machine Learning avec le langage Python permet de disposer des connaissances théoriques nécessaires pour une compréhension approfondie du Machine Learning et d’appréhender les outils techniques utiles pour mettre en pratique les concepts étudiés. L’auteur y expose des exemples concrets sur les concepts de l’apprentissage automatique. Les lecteurs avertis trouveront dans ce livre une occasion d’aller plus loin dans leur compréhension des algorithmes du Machine Learning. L’auteur commence par expliquer les enjeux de la Data Science ainsi que les notions fondamentales du Machine Learning avant de présenter la démarche théorique d'une expérimentation en Data Science avec les notions de modélisation d'un problème et de métriques de mesure de performances d'un modèle. Le lecteur peut ensuite passer à la pratique en manipulant les bibliothèques Python Numpy et Pandas ainsi que l’environnement Jupyter. Il peut ainsi aborder sereinement les chapitres à venir qui lui feront découvrir les concepts mathématiques, et la pratique sous-jacente, relatifs aux algorithmes du Machine Learning tels que les statistiques pour la Data Science, les régressions linéaire, polynomiale ou logistique, les arbres de décision et Random Forest, l’algorithme K-means, les machines à vecteurs de support (Support Vector Machine), l’analyse en composantes principales, les réseaux de neurones ou encore le Deep Learning avec TensorFlow et le traitement automatique du langage (Natural Language Processing). Des éléments complémentaires sont en téléchargement sur le site www.editions-eni.fr.
Hands On Machine Learning with Scikit Learn, Keras, and...

Quand la machine apprend: La révolution des neurones artificiels...

Nous vivons une révolution inouïe, inimaginable il y a encore cinquante ans, celle de la machine qui apprend, et qui apprend par elle-même. Au lieu d'exécuter les ordres d'un programme, la machine peut désormais acquérir par elle-même, par l'expérience, les capacités nécessaires pour accomplir les tâches qui lui sont assignées, y compris celles que l'on croyait réservées à l'humain. Les applications sont immenses : reconnaissance des formes, des voix, des images et des visages, voiture autonome, traduction de centaines de langues, détection des tumeurs dans les images médicales... Yann Le Cun est à l'origine de cette révolution. Il est en effet l'un des inventeurs de l'apprentissage profond, le deep learning, qui caractérise un réseau de neurones artificiels dont l'architecture et le fonctionnement s'inspirent du cerveau. C'est à la naissance de cette nouvelle forme d'intelligence, à l'émergence d'un système quasiment auto-organisateur, que nous convie Yann Le Cun. Un livre qui évoque la démarche intellectuelle d'un inventeur au carrefour de l'informatique et des neurosciences. Un livre qui éclaire l'avenir de l'intelligence artificielle, ses enjeux, ses promesses et ses risques. Un livre passionnant, clair et accessible, qui nous fait pénétrer au coeur de la machine et nous fait découvrir un nouveau monde fascinant, qui est déjà le nôtre.
Probabilistic Machine Learning: An Introduction

A detailed and up-to-date introduction to machine learning, presented through the unifying lens of probabilistic modeling and Bayesian decision theory. This book offers a detailed and up-to-date introduction to machine learning (including deep learning) through the unifying lens of probabilistic modeling and Bayesian decision theory. The book covers mathematical background (including linear algebra and optimization), basic supervised learning (including linear and logistic regression and deep neural networks), as well as more advanced topics (including transfer learning and unsupervised learning). End-of-chapter exercises allow students to apply what they have learned, and an appendix covers notation.
Introduction to Machine Learning

Machine learning-a computer's ability to learn-is transforming our world: it is used to understand images, process text, make predictions by analyzing large amounts of data, and much more. It can be used in nearly every industry to improve efficiency and help stakeholders make better decisions. Whatever your industry or hobby, chances are that these modern artificial intelligence methods will be useful to you as well.
Introduction au Machine Learning 2e éd.

Cet ouvrage s’adresse aux étudiantes et étudiants en informatique ou maths appliquées, en L3, master ou école d’ingénieurs. Le Machine Learning est une discipline dont les outils puissants permettent aujourd’hui à de nombreux secteurs d’activité de réaliser des progrès spectaculaires grâce à l’exploitation de grands volumes de données. Le but de cet ouvrage est de vous fournir des bases solides sur les concepts et les algorithmes de ce domaine en plein essor. Il vous aidera à identifier les problèmes qui peuvent être résolus par une approche Machine Learning, à les formaliser, à identifier les algorithmes les mieux adaptés à chaque problème, à les mettre en oeuvre, et enfin à savoir évaluer les résultats obtenus. Les notions de cours sont illustrées et complétées par 85 exercices, tous corrigés.
Machine learning et Python pour les Nuls, mégapoche

Plongez au coeur de l'intelligence arficielle et de la data science avec le machine learning et Python Vous aussi participez à la révolution qui ramène l'intelligence artificielle au coeur de notre société, grace à la data science, au machine learning et à Python son langage de référence. La data science consiste à traduire des problèmes de toute autre nature, en problèmes de modélisation quantitative, résolus par des algorithmes de traitement. Ce livre diviser en 2 livre distincts va tout d'abord vous faire découvrir tous les ingrédients qui font du machine learning l'outil indispensable du développement d'applications liées à l'intelligence artificielle. Dans un second temps, vous découvrirez le langage vedette du machine learning et de la data science, le bien nommé Python.